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ABSTRACT

A 2D digital image S is represented conventionally by the union of grid squares
containing pixels of S which we denote by F(S). This gives the correct topology for S
with 8-adjacency, and with a little imagination, 4-adjacency can also be properly han-
died. However, one encounters difficulty in extending basic 2D results to 3D digital im-
ages. The last few years have seen the need for better methods which give a closer link
with well developed continuous topology, especially with the advent of digital surface
theory [111. We define a new continuous model F(S) by refining F(S). We show that
this gives a better bridge between the two subjects, digital and continuous topologies.
We also show how this space F(S) is related to two other continuous models [4] [71.
Although we concentrate only on 2D images in this paper, the concepts and general ideas
extend to 3D images. A 3D version of this paper is in preparation.
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1. Introduction

A digital image is a discrete sample of a continuous picture in real life. The

- sample is usually taken on an evenly spaced grid point set on a rectangular

domain of a plane. To be definite, think of the set of points with integral coordi-

nates in the x-y plane as the grid point set.

For example, suppose the sample looks like the figure below:

i 1 1 O00

0 0 1 1

Figure 1.1. The l's indicate pixels of an object, and the O's indicate pixels
*of the background.

The natural question is "Does this digital sample suggest one (connected)

object or two separate ones of similar appearance?" Of course, it also depends on

how the sample was taken, but this is not our concern here. We are interested in

Sb defining geometric concepts on digital images consistently and realistically, which

is about all we can do without knowing the original picture. Returning to the

connectedness question, if we regard the set of l's shown above as a connected

set, then the set of O's should be a disconnected set in order to be consistent with

- the standard topology on the Euclidean plane. Thus it is customary in digital

topology to use different adjacency topologies on a digital image (denoted by S)

and on its background (regarded as the complementary set, and denoted by S). ,

0For example, if 8-adjacency is used on S, which makes the l's in Figure 1.1 con- j

nected, then 4-adjacency is used on S which makes the O's disconnected.
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In order to approximate the unknown original picture by a continuous one,

it has been the tradition to represent each point p in the digital image S by the

closed unit square around p, and to represent S by the union of all such squares.

Let us denote this union by F(S ). This gives a good topological representation

for the 8-adjacency topology on S in the sense that S is connected in this topol-

ogy if and only if F (S) is connected in the usual Euclidean topology. Of course,

we cannot say the same thing abo;1" the 4-adjacency topology at the same time.

However, it is not difficult to describe the connectedness property using generally

accepted terms of Euclidean topology in F (S).

(a) (b)

Figure 1.2. (a) F (S), the traditional pixel representation. (b) E (S), the skeletal
representation used for computing the Euler characteristic number
of S.

An alternative to the square representation has existed all along, dating back

to Minsky and Papert's 1969 Perceptrons [8]. In computing the Euler charac-

teristic number of a digital image S, they took a point for each point in S, a line

segment for each pair of 4-adjacent points, and a square for each 2X2 matrix of

*four 4-adjacent points in S. This gives a good skeletal representation of S with

4-adjacency which will be denoted by E (S). Of course, it is not difficult to deal

with 8-adjacency as well. Curiously enough, all subsequent authors (except Mor-
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genthaler [10]) used this representation only in computing Euler characteristic

numbers until Kong and Roscoe used it for other purposes in 1985 [7].

As long as one is concerned with only 2D images, there is no real difficulty in

defining continuous representations of digital images. The situation is different

* when we consider 3D images. A number of basic facts about 2D images were

generalized to 3D images without great difficulty, leading to the initial develop-

ment of 3D digital topology by Rosenfeld in 1980 [15], but one crucial theorem

for this foundation did not yield to an easy generalization. It is Proposition 5 in

M[151. The stumbling block was the fact that the corresponding theorem for 2D

images used a boundary curve tracking algorithm which did not extend to surface

tracking in 3D in any obvious way. Meanwhile Herman and his colleagues were

developing such a surface tracking algorithm. Based on topological results from

the classical book by Newman [12], Herman and Webster proved [4] that their

previously developed algorithm [l [2] was correct. However, the surface traced

by their algorithm is not a surface in the strict topological sense. Nevertheless,

the main result of this work was essential to the proof of Proposition 5 given by

Morgenthaler and Rosenfeld in [11].

During the same period of time, a theory of digital surfaces was developed

K' [I1]. A surface was defined as a digital image satisfying a certain set of axioms

analogous to the axioms for a manifold in topology. Although this definition is

clever and simple, it was no easy task to prove the digital analog of the standard

fact in topology that a closed surface in Euclidean 3D space is orientable [14].

Thus it was natural to seek for some closer connection between the two subjects,
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the newly developed 3D digital topology and the well established Euclidean topol-

ogy, so that one could use known facts from this latter discipline. Recently Kong

and Roscoe did precisely that in 1985 [71. They defined the continuous analog of

a digital image as the 3D version of the representation considered by Minsky and

Papert and others as mentioned above, and proved that a digital image S is a

surface in the sense of Morgenthaler and Rosenfeld [III if and only if its continu-

ous analog is a surface in the strict topologntcal sense. In other words, the

axiomatic definition of a digital surface given by [11] was correct (if direct adja-

cency is used on the digital image, and indirect adjacency is used on the back-

ground image).

The purpose of this paper is to propose another method of describing a digi-

tal image S by a continuous representation to be denoted by F (S). This

representation F (S) seems more consistent with the topological behavior of

Euclidean space in the sense that it tends to give easier access to basic results

from that well developed subject. We first give a new proof of the main theorem

of Herman and Webster [4] from a conceptual point of view. Their proof is a

combinatorial analysis of different types of strong connectedness. We reduce all

- - these to the usual connectedness in topology using F(S). We use this as a

motivation for defining F (S), but the advantages of F (S) should be apparent

once one sees the definition. To define it., we introduce a concept of singularity

similar to that used in algebraic geometry and differential topology. We then

adopt one of several possible ways of removing the singularities from F (S). The

*= resulting topological space F (S) is a compact manifold with a bc undary in the

4



strict topological sense. In particular, the boundary is a true surface in the 3D

case, and a true curve in the 2D case. This surface is an approximation to the

surface traced by the surface tracking algorithm mentioned above.

We begin with brief descriptions of F (S) and U(S ), and with the introduc-

tion of cellular complexes in a very restricted sense (Section 2). In the following

two sections, we define a 2D analog of the surface tracking algorithm by means of

a graph [1] [2 [41, and we give a definition of F (S) while constructing a proof of

V: the 2D analog of the theorem due to Herman and Webster [4]. Combining the

results in Sections 2 and 4, we give a proof of Proposition 5 [ill (Section 5).

Finally, the three continuous representations of a digital image are shown to be

intimately related (Section 6). For example, the 2D analog of the above men-

tioned surface tracking algorithm can be used to trace the continuous analog

E (S).

The content of this paper is devoted to 2D images, but it is so arranged as

to yield an easy extension to 3D images in principle.

4.
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2. Continuous representations

We assume that the reader is familiar with the basic definitions and elemen-

tary facts about 2D digital geometry given in 116]. Let E be the set of all

integral points within a large rectangular domain in R 2, and let S be a subset of

;. For each p in E, define F (p ) to be the unit closed square with p at its

center, that is the set of all points (x, y) in R such that

Ix -p, 15 1 y - P21 < 1. Define F (S) to be the union of F(p) for all p inS,

and U(S) to be the interior of F (S). (In analogy to F (p), one could define the

open set U(p) for p in S to be the interior of F(S). However, this would be

quite useless since the union of the U(p ) for p in S consists of disjoint open

sets.) Notice that F(S) (resp. U(S)) is connected in the sense of the standard

Euclidean topology if and only if S is 8- (resp. 4-) connected in the sense of digi-

tal topology. In other words, we can say that:

The 8- (resp. 4-) adjacency topology on a 2D digital image S is well represented
by the standard Euclidean topology on F (S ) (resp. U (S )).

The topological spaces F(S) and U(S) will be referred to as contnuous

representations of S (in the primitive form). E and hence S being a finite set,

F (S) (resp. U (S)) is a bounded and closed (resp. open) subset of R 2. Thus if S

is represented by F (S) then the complementary set 9 (called the background)

should be represented by U(.). If we assume that S does not meet the boun-

i'r dary of E, we have

U (E) = (S) U(s)

&S



This is the basic reason for using the 8-adjacency topology on S if the 4-

adjacency topology is used on S.

Now we study global properties of the topological space F ( S ) by means of

the adjacency relations among the constituent blocks F(p ) for p in S. The set

together with the set of these blocks is a special case of a cellular complex(*)

which we shall not define precisely here. One relevant remark is that it is some-

times important to distinguish the single set F (S) from the collection of all its

constituent cells: all squares F (p) for p in S, all their edges, and all their ver-

tices. If we denote this collection by K then we denote the union of its consti-

tuent cells by JK I which is F (S). The figure below shows an example,

p 0

(a) q r (b)

Figure 2.1. (a) S = {p,q,r}. (b) F(S).

where K consists of 3 squares, 10 edges, and 8 vertices. Fortunately the cell

complex K made out of the cells in F (S) is uniquely determined by the single

set F (S ). A cellular 1-complex(*) is a collection of edges in some F (S) together

with all their vertices. If L is a cellular 1-complex then ILI denotes the union of

all edges in L. For example, let E F (p) nF (q), the common edge of two

squares, and let u, v be the two end points of E. Then L = {E,u,v } is a cel-

lular 1-complex. For any pixel p in E, define the (cellular) boundary aF (p) to

be the 1-complex consisting of its four edges and the four corner vertex points.

7
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Notice that the set-theoretic boundary Bd F (p) in R 2 is simply IOF (p )1. If

E =F(p)r-lF(q)with p in S, q ins thenwedenote p - i(E), q = o(E)

(i for inside, o for outside). Of course, all these depend on S. We define the

(cellular) boundary aF (S) to be the 1-complex consisting of all edges E and the

.. end point vertices of E for which there are pixels p in S, q in S with

E = F (p) fl F (q). We leave to the reader the proof of the following impor-

tant but not difficult lemma:

Lemma JOF (S )I =Bd F (S).

'

(*)The cellular complex, also known as the CW complex, was initially
defined by the English mathematician J.H.C. Whitehead in the 1930's. It con-
sists of very general types of cells. It was invented for studying the deeper struc-
ture of a topological space, such as multiple-connectedness. It is used for corn-
puting global properties. For example, the Euler characteristic number of a CW
complex can be computed by counting the number of cells in each dimension
which is shown to depend only on the underlying topological space independent
of any particular cellular complex on the space. See Spanier (1966) [171 for a
more comprehensive exposition on this subject. Of course, we need only consider
the very special case arising from digital topology. Klette formulated such a spe-
cial type of cellular m -complex in Euclidean n -space. (See Klette (1983) [61.) It
would be useful to establish, in this setting suitable to digital topology, elementa-
ry facts analogous to those in algebraic topology. The only work involving
homology groups in digital topology appears in Janos and Rosenfeld (1981) [5].
This work too touches very lightly upon an algebraic method from topology.

O1

%r- %.. '•.*...- '.',, .
"

. - . . . 4. . . ... . .. .. . . '... .. . .. . .'



3. Graph representation

In this section we shall define a 2D version of the graph due to Herman et at.

[1] [2] [4] as a data structure for a boundary curve. Following their notation, let

Q = F(S) be a cellular complex, and let P = R 2  Q. Two edges E, F in

9Q are said to be P-adjacent if (1) E, F are adjacent, i.e., E, F have a com-

mon vertex, and (2) o (E)= o (F), or o (E), o (F) are 4-adjacent, or o (E),

o (F) are 4-adjacent to a common pixel in S. Notice that the first condition

determines a 2X2 matrix containing all of the pixels 0 (E), i (E), 0 (F), i (F),

and that the second condition is equivalent to the statement that (2') o (E),

o (F) are 4-connected within the 2X2 matrix. There are six possible cases of

relative positions of o (E), i (E), o (F), and i (F) within the 2 X2 matrix:

: .E E E E E E

0 0 1 0 1 I O 0 1 0 1
FF_ F _

F F

(a) (b) (c) (d) (e) (f)

Figure 3.1.

The edges E, F in Figures 3.1 (a), (b), (c), (f) are P-adjacent whereas those in

the other two figures are not. A P-component of &9Q is defined as usual. Define

a graph for aQ by: For each edge in OQ, create a node n (E), and for each P-

adjacent pair of edges E, F, connect the nodes n (E), n (F) by an arc. We shall

denote the graph by -y(Q). We can turn -(Q) into a digraph by: For each p in

E. orient F (p) clockwise, and let the induced orientation on the four edges be as

i

9
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indicated below:

Figure 3.2.

Thus if E = F (p) fl F (q) then the two orientations on E induced by those on

F (p), F (q) are opposite. For each edge E in OQ, we shall use the orientation

on E induced by o (E). Thus E is a directed line segment, written E = -T.

Define an ordered pair E, F to be P-adjacent if the end point of the directed

line segment of E is the beginning point of the directed line segment F, that is,

if E = uT then F = M--. Clearly P-adjacency implies P-adjacency. A quick

survey of all six cases in Figure 3.1 shows that if E, F are P-adjacent then

either E, F, or F, E are P-adjacent. This then makes it possible to direct

'*'.. every arc of the graph -(Q). We shall denote the resulting digraph by F(Q).

The examples below reveal some interesting facts about these graphs.

01
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S0 1 1 1

1101 

i1 101101110

(a)

(b) (c) (d)

Figure 3.3. (a) S. (b) Q = F(S). (c) oQ with directed edges.
(d) Digraph F(Q).

1 0

(a) 7d)
(a(b) (c) (d)

Figure 3.4. (a) S. (b) Q = F(S). (c) 9Q with directed edges. (d) r(Q).

Notice that in Figure 3, (Q ) has three components whereas aQ has only two,

and that in Figure 4, both aQ and 1(Q) have only one component each.

V 11



4. Continuous representations in the refined form

The purpose of this section is to introduce a concept of singularity in a digi-

tal image S, and to show how to remove the corresponding singular point from

the topological space F(S) to construct a better continuous model for S. We

shall do this while deducing a 2D version of the main theorem in Herman et al.

[4] from a purely topological theorem proved in Appendix A.

Let Q F(S) andP -R 2 -Q as before. Let C be a component of Q,

and let D be a component of R 2 - C.

Proposition 4.1. Bd D is a P-component of i9Q.

In general, a P-component is not a component of aQ as seen from the

example in Figure 3.3c, and a P-component is not a simple closed curve as seen

from the example in Figure 3.4c. It is clear from the definition that P-

components are connected sets.

We need only prove that (1) every pair of points of Bd D are in the same

P-component; (2) if F C aQ is an edge in the same P-component of an edge E

in Bd D then F C Bd D. First notice that Bd D is a cellular 1-complex in

which each edge E has the property that U(o (E)) C D, F(i(E)) C C. For (2)

we need only prove it when F is actually P-adjacent to E, but then o(E),

o (F) are in the same 4-component in R 2 - C and i (E), i (F) are 8-connected in

_ Q, and hence F(i(F)) C C, U(o(F)) C D implying F C Bd D as claimed in

(2).

12
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For (1), it follows from Proposition A in Appendix A that Bd D is con-

nected. Thus if we know that components and P-components are the same then

we are done. A study of all six cases of adjacent pairs of edges E, F in i9Q in

Figure 2 showed that non-P-adjacency occurred only in a 2X2 square of the

0 1
form 1 01 Such a square (or its rotation by 0 degrees) shall be referred to as a

singularity in S. The non-existence of a singularity in S guarantees that any

adjacent edges in aQ are P-adjacent. Thus if we assume that there is no singu-

larity in S then we are done.

* 0op

Now assume the existence of singularities in S. If q 0 is a singularity then

the common vertex point F (p) F f (q) will be called a singular point in F (S).

The key problem in representing S by F (S) arises from the presence of singular

points: F (S) looks like near a singular point x and is connected via

a single point. At the same time, the background set near x consists of two dis-

joint open sets but they are so close that their boundaries meet though only at a

single point. This problem can be solved by modifying F (S) slightly near each

singularity of S. Incidentally, this kind of problem exists in many other fields

such as algebraic geometry, differential topology, etc. There are several possible

ways of resolving singularities, but here we shall adopt the simplest one which

may be achieved in practice by taking a sufficiently find grid. The basic idea is

to widen the bottle-neck at x from F (p ) to F (q) without altering the global pic-

ture of F (S). For each singular point x, simply add to F (S) a 1/4-size closed

square a. with its center at x.

13



Wax 
x

(a) (b)

Figure 4.1. (a) Near a singular point x in F (S). (b) The singular point
x resolved in F (S) by adding a small square around x.

Let F (S) = F (S) U (Ui a.,) where xi ranges over all singular points of

* F (S). One could use a unit size square for a., but this would alter the shape of

F(S) too much. Now F(S) has no singular points. Write Q = Q U (Ui o.,),

C = C U (U ,) with xj in C, D =D - UJ a,,. Then C is a component

in Q and 1D is a component in R 2 - Q. In this case, Bd Dt has just been

proved to be a component of OQ. Hence Bd Dt is a simple closed polygon, and

the corresponding Bd D is a P-component of OQ. //

The space F (S) gives more accurate topological descriptions of the digital

image S, and its border sets with respect to 8-adjacency on S. The alteration of

F(S) altered U(S) as well. Define U(S) to be U(E) - F(S). We shall refer to

F(S), U(9) as continuous representations of S with 8-adjacency (in the refined

form).

We can define F (S) analogously for 4-adjacency on S; in this case the open

square around x is removed from F (S) for each singular point x in F (S). Thus

F (S) depends on the type of adjacency used on S. When there is possibility of

* confusion, we shall use F, (S) for x -adjacency.

14
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Morgenthaler considered the problem of finding conditions on S under which

the topological space F (S) correctly represents the digital topology on S. The

conditions he proposed were phrased in terms of local connectedness. It turns out

that those conditions were devised to guarantee the non-existence of a singularity

in S. We shall prove this in Appendix B.

Before closing this section, we wish to pont out that resolution of singularity

can be achieved on the digital level. First subdivide the grid space into half-units

on each axis. Thus each unit square is subdivided into 4 smaller squares.

Replace each pixel by 4 new pixels of the same kind. So far, there is no real

change; a singularity remains a singularity. Now we replace each singularity in

S as in the figure below:

0011 0011 0 0 11
01 0011 0111 0001

10 1100 1110 1000

1100 1100 1100

(a) (b) (c) (d)

Figure 4.2. (a) A singularity. (b) Finer grid. (c) Singularity resolved for
8-adjacency on S. (d) Same for 4-adjacency on S.

It may be wiser to use a finer grid for a closer geometric approximation. We

actually used a 1/4 unit length size grid in the definition of F (S).
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5. Application to a connectedness theorem in digital topology

The following theorem on 2D images was proved in Rosenfeld and Kak [16]

and its 3D analog was proved indirectly using the surface tracking algorithm due

to Herman et al. in [1] [2] [4]. The purpose of this section is to show how the

method of continuous representation of the previous section may be used in

deducing this basic theorem in digital topology from the topological result of the

previous section.

Proposition 5.1. Let S be a digital image. Let C be a 4-component of S,

* and D an 8-component of S such that C, D are 4-adjacent. Then CD is 4-

connected where CD is the set of p in C which are 8-adjacent to D.

Let us first prove the following exact digital analog of the theorem of the

previous section:

Lemma 5.1. Let S be a digital image. Let C be an 8-component of S, and

let D be a 4-component of Z. Then DC is 4-connected where DC is the set of all

p in D which are 8-adjacent to C.

Let Q = F(S). Then F(C) is a component of F(S). Assume that S does
S_

not meet the border of E and that U (E) has no boundary so that F (S) C U (E).

* .. Take any pair p, q in DC. We want to show that p, q are in the same 4-

4 component. By assumption, p is 8-adjacent to C. Assume p is not 4-adjacent

,.. to C. Then there is a pixel a in C located relative to p forming a 2X2 matrix

p x
"x a" Here the other two pixels (x 's) must be in C. They are 4-adjacent to p

and hence are in the same 4-component as p, namely D. Let b be one of these

[ $
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x's. Then the edge E =. F(a) nF(b) is in Bd D. Similarly there are pixels

c in C, d in D such that c, d are 4-adjacent and q, d are also 4-adjacent.

The edge G =-F(c)nF(d) is in Bd D. Now by Proposition 4.1, E, G are

in the same P-component. This implies that b, d are in the same 4-component

in DC, and hence p, q are also. //

To prove the proposition, let D' be the unique 8-component of C containing

D. In view of the above lemma, we need only show CD = CD,. The relation

"C" follows immediately. Observe that CD is the set of pixels p in C such that

* F (p) nf F (D) -76 0. Similarly for CD,. This reduces to proving

OF (D') C OF (D). Remember that OF (D) is the union of all edges E such that

E = F(p) F (q) for p in D, q in D. Similarly OF(D') is the union of all

edges E' such that E' = F(p') n F(q') for p' in D', q' in D'. Actually q' is

in C in the above expression of E'. If q' C then q' E D' since p', q' are 4-

adjacent, and D' is an 8-component of C. We need only prove that if E, E' are

adjacent edges such that E C oF(D) and E' C OF(D') then E' C OF(D).

Write E' = F(p') nF(q') as explained above. Now we need only prove that

* p' E D and q' ED. Since C nD -0, q' E C implies q' E E. To prove

q' E D, consider all possible cases of E, E': If p = p' then p'E D since

p E D. Suppose x or y is p in the figure below:

17



If p' E S then p' E C since p', q' are 4-adjacent, which is absurd. Thus we

must have pI E S, but then P' E D since p' is 8-adjacent to p. Finally notice

thatp = q is not possible sincep ED C and q' E C C S /1

4.

.-
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6. Relations among various continuous representations

In this section, we shall describe how closely the three different continuous

representations of a digital surface are related. For a 2D digital image S with 4-

adjacency, define a cellular complex E (S) whose vertices are the mid-points v (p)

of the squares F (p) for p in S, whose edges are the line segments connecting 4-

adjacent pairs in S, and whose squares are the convex hulls of the four vertices

of 2X2 matrices of 4-adjacent pixels. Notice that this is slightly more general

. .~than the definition given in Section 3. The example below should clear up any

-ambiguity about this definition.

0010

0 O0 1 O0 0 ----

. I 1 0 1 1

(a) (b)

Figure 6.1. (a) S. (b) E (S).

One can easily extend this definition to higher dimensions with various types of

adjacencies. Kong and Roscoe did an extensive study of 3D digital topology in
S

[7], in which they prove that a digital image S with 6-adjacency is a digital sur-

* face in the sense of Morgenthaler and Rosenfeld [il] if and only if the 3D analog

E (S) is a surface in the strict topological sense. We shall prove in essence a 2D

analog of the theorem: If a 3D digital image S is a digital surface in the sense of

[11], then F(S) is topologically equivalent to the cross product E(S) X [0,1]

(E(S) fattened), to be denoted by E(S) where [0,1] is the closed unit interval.
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Moreover, the surface tracking algorithm can be used to trace any boundary com-

ponent of OF (S), and hence any component of E(S). For any pixel p, denote

by N(p ) the set of all 8-neighbors excluding p. Recall that a pixel p in S is a

4-curve point if the following 2D analog of a simple surface point is satisfied:

N (p) n S has exactly two components 4-adjacent to p., N (p) l g has exactly

two components 4-adjacent to p, and every q in N(p )n s is 8-adjacent to

both of these components. S is a digital 4-curve if every pixel of S is a 4-curve

point. This defines a digital analog of a compact 1-manifold without boundary in

the sense of continuous topology. Such a space is known to be a finite family of

simple closed curves. A compact connected 1-manifold with non-empty boundary

is known to be an arc. Therefore a compact 1-manifold is a finite union of a dis-

joint family of arcs and simple closed curves. For a 2D digital image, the follow-

ing equivalent definition will be more convenient: A simple closed curve is a

sequence of pixels p 1, P2, p••, p(n >4) such that pi is 4-adjacent to pi if and

only if i = j + 1 (mod n). The restriction n >4 is to exclude the two degen-

erate cases: S consisting of a single pixel, and S consisting of a single 2X2

1 1
matrix 1 1* A digital 4-arc is defined similarly.

The following lemma is a 2D version of the analogous theorem due to Kong

and Roscoe [7].

Lemma 6.1. A digital image S is a simple closed 4-curve (resp. 4-arc) if

and only if E (S) is a simple closed polygon (resp. arc).
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Proof. Let S be a simple closed 4-curve. Using the second definition

above, it is clear that E (S) does not contain an isolated point or a square, and

that if S consists of P 19 P2, - - • , p. then E (S) consists of vertices v (p,) and

line segments joining only every consecutive pair v(pi), v (pj) for

j = i + 1 (mod n ). In other words, E (S) is a simple closed polygon.

Conversely let E(S) be a simple closed polygon with vertices

v 1' 2, -... , va labeled in consecutive order. Let pi be the unique pixel in S

such that v (pi) = vi. Since an isolated single point is not regarded as a simple

closed curve, S cannot contain just one pixel. Similarly S cannot be a single

1 1
2X2 matrix like

Hence we must have n >4. Now it is clear that the sequence

P 1 P 2, • Pn satisfies the condition for a simple closed curve. (The proof for

the statement in the parentheses is similar.) l/

The following theorem gives a partial characterization of a simple closed 4-

curve, and at the same time, it reveals a close relation between the two continu-

ous representations of a digital image.

Proposition 6.2. Let S be a 2D digital image. If S is a simple closed 4-

curve then F (S) " E(S) (homeomorphism).

Proof. Suppose that S is a simple closed 4-curve. If S contains no singu-

larity then F (S) S F (S), and F (S) is clearly homeomorphic with E(S) as

claimed, and we are done. We study how a singularity may occur in S. Pick

any pixel p in S. By definition, there are exactly two other pixels 4-adjacent to

21
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p. There are only two possible cases (up to an equivalent transformation) as in

the figure below:

1p 1 1p x

x x x x 1 x

(a) (b)

Figure 6.2.

No singularity can occur in Figure 6.2(a). A singularity may occur in Figure

,I" 6.2(b), but only in the upper right 2X2 sub-matrix. This shows that F(S) is

definitely not a product with [0,1] but that F (S) is as claimed. //

The converse is not true. Let S be a digital set of two 4-ad-,acent pixels.

Then F (S) S-- F (S), and certainly F (S) S E (S), but S is not a simple closed

4-curve. Notice that S is an arc. Indeed we have

Proposition 6.3. If F (S) 2- E(S) (homeomorphism) then S is a disjoint

union of 4-arcs and simple closed 4-curves, and conversely.

- Proof. Assume F (S) - E(S). There are one-one correspondences between

the following sets: components of E(S), components of E (S), 4-components of

S, components of P (S). The conclusion follows from Lemma 6.1.

The converse follows easily. //

So far, a digital analog of a surface with boundary has not been defined in

the literature. With a suitable definition, one should be able to prove the follow-

ing conjecture: A 3D image S is a surface with boundary if and only if

22
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F (S) E(S) (home omorphism).

Remark 6.4. The 2D analog of the surface tracking algorithm of Herman

et al. traces o9F (S)

A rigorous proof is left to the interested reader. We shall merely study the

generic examples given in Figures 3.3 and 3.4. Let S be the digital image with

4-adjacency in Figure 3.3a which is a simple closed 4-curve. The F (S) is a fat-

tened simple closed polygon E(S). The suggested tracking algorithm can be

used for S with 8-adjacency, and it traces out the boundary curves of 4-

*- components of the complement of S, that is just S. In our example, there are

two separate boundary curves. The interior curve looks like Figure 3.4c, which is

topologically equivalent to its graph in Figure 3.4d. It is an important fact that

the curves traced by the above mentioned tracking algorithm are not in general

simple closed polygons.

Next let S be the same image, but with 8-adjacency. Then there are three

components in U (S), two of which are holes and the third of which is outside S.

The previously stated algorithm can be applied to Q = F(S). It traces out

three P-components of OQ. In our example, they look like Figure 3.3c with the

two interior squares separated from each other. Topologically, they look more

like the graph in Figure 3.3d which is just aF (S). (Caution: The space F (S)

depends on the adjacency used on S.) /

In this sense, we can say that the algorithm of Herman et al. traces E (S).
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t.5

a7. Concluding remarks

We defined the closed subspace F(S) and the open subspace U(S) of

Euclidean space R as primitive approximation of a 2D digital image S by con-

tinuous topological spaces. This space F (S) is not new. In fact, it has always

been thought of as the set of pixels representing S. We pointed out that F(S)

(resp. U(S)) is a correct model for S itself with 8- (resp. 4-) adjacency, but not

for its borders. However, one can get around this difficulty if one works with 2D

images only, but not if we want to develop 3D digital geometry as witnessed by

the difficulty encountered in the proof of orientability of a (closed) digital surface

(with 6-adjacency), and by the fact that no direct proof of Proposition 5 in [10]

has appeared in the literature up to now (*). The existing proof [il] depends on

the continuous model of surfaces defined by Herman and his colleagues [1] [2] [4].

Thus it is clear that a good continuous model is needed so as to enable us to

make use of the wealth of results from continuous topology. In this paper, we

refined the model F (S) to give a more accurate description of S and its borders.

We first defined the concept of singular points in F (S), and showed a procedure

to resolve them to obtain the refined model denoted by F (S). We produced a

new proof of the main theorem of Herman and Webster [4] using F (S) by first

(*) We believe that the reason for this is that digital images are defined on a
simply connected space. All existing proofs of Proposition 5 depend on the
theorem of Herman and Webster whose proof is based on topological results on
polyhedral sets in Euclidean space, which is more than simply connected. In a
private conversation with T.Y. Kong, we agreed that no digital analog of Euclide-
an space has ever been effectively used so far. Therefore, if anybody wishes to
pursue digital geometry from a purely logical standpoint, it will be necessary to
further develop the digital analog of Euclidean geometry.
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constructing a purely topological analog, and then examining the differences

between the digital and the analogous topological statements. We gave another

proof of Proposition 5, but still depending on the result of Herman and Webster

[41.

Traditionally, there has existed another continuous model of S which we

denoted by E(S). It is roughly U(S) thinned down. Strangely, E(S) has

always been used only for computing the Euler characteristic number of S, until

the appearance of Kong and Roscoe [7] in 1985. (See Minsky and Papert, Per-

ceptrons (1969) [8], and Rosenfeld and Kak (1980) [161.) In [7], it is proved that a

3D digital image S is a surface with 6-adjacency in the sense of Morgenthaler

.\.. and Rosenfeld [i] if and only if the 3D analog of E(S) is a surface (without

boundary) in the sense of continuous topology.

We showed that if S is 2D analog of a digital surface in the sense of [11]

then F (S) is topologically equivalent to E(S) (the cross product of E (S) and

the unit interval). The converse is in general not true, but if we modify the

statement by replacing "surface" by "surface with boundary" then it may be

true. As a corollary, the 2D analog of the surface tracking algorithm [1] [2] may

be used to trace E (S) in principle.
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APPENDIXA

The following is a topological analog of the main theorem of Herman and

Webster [4].

Proposition A. Let K be a connected cellular complex in R n, and let D

be a component of R n _ K. Then the boundary set Bd (D ) is connected.

(A "cellular complex" here can be thought of as a finite union of cubical

cells as defined in Section 2, or more generally as a CW-complex as defined in

Spanier [17].)

* We need a formula from algebraic topology involving the Betti numbers.

For a topological space Y, a sequence of numbers called Betti numbers bi (Y) are

defined for i = 0, 1, • b 0(Y) is the number of (path) components of Y, and

6 I(Y) is the number of independent loops in Y. For example, b I(Y) = 2 for Y

a torus with one hole, and b j(Y) = 0 for Y = R We need the following for-

mula: b 0 (A flB) : bl(A UB)+ bo(A)+ bo(B)-1, where A, B are

both open subspaces of R ' with A fl B 3 0, or A, B are both subcomplexes

of a cellular complex with A f B -4 0. This formula can be derived from the

Mayer-Vietoris exact homology sequence for the pair (A, B). (See Spanier [171

for details.)

Proof. It follows easily that R _ K has finitely many components, one of

which is D. Denote the other components by Di (i = 1, 2, ). Then

R K = D U (U, Di.). Notice that each Di is open in R since X - K is

open and R is locally connected. Let K* =K U (Uj Di) Then
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D = R _K*, and K* = R -D is a closed set of R . D being open in

R ' , D nBd D =0. Hence Bd D C Bd K. Similarly Bd Di CBd K for

all i.

Claim: K* is connected. It suffices to prove that if A is a non-empty sub-

set of K* which is open and closed in K* then A = K*. Notice that A must

be closed in R" since K* is. K being connected, either A fi K . 0 or

K CA. Case 1: SupposeA nK =0. ThenA nDi 0for some i. Di

being connected, Di C A. On the other hand, A being closed in R",

C0(D,) CA and hence Bd Di - Cl(D )-Di CA, but Bd Di C K, contrad-

icting the assumptionA inK =0. Case 2: Suppose K CA. If D, A 40

then Di C A as observed before. Hence A =- K U (U, D,) where j ranges

over a subset of the i's. Suppose Di nA =0. Let xEBd D C K. Since

C0(D 1 ) C K* and K C A and A is open in K*, A is an open neighborhood of

x in K*. This then means A nDi 3 0 contradicting the assumption

Di n A =--. Hence A must contain all D 's , which means A =-K*. This

proves the claim.

Now we apply the formula for A = CI(D), B = K*. Notice

Bd D =A nB and R" =A UB. Since b 0 Cl(D)= b 0(K*)= 1, and

b0 (R f) = 0, we conclude that bo(Bd D) = 1. //

This proposition is not in the most general form, which is of no interest to

us. The important question here is "What makes the topological form so easy

whereas the purely digital form seems so difficult?" The critical difference seems
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to be the lack of efficient use of the fact that digital images are taken in

Euclidean space. The above proof uses the property of simple connectedness of

Euclidean space. Perhaps that is all we need from Euclidean space. If we replace

R 2 by a non-simply connected space, the proposition may not be true. We end

this section with a brief explanation of this phenomenon.

A space Y is said to be simply connected if Y is (path-wise) connected, and

every loop in Y is deformable to a point. For example, an open n -ball and an

n-sphere in R 1+1 are simply connected, but a simple closed curve is not. The

above theorem is not true if we replace "simply connected" by the weaker condi-

* tion "connected". For example, take an annulus for X as in the figure below,

and K for the right half shown by the shaded area. Then D is the left half in

the figure, and the set Bd D consists of two disjoint (vertical) line segments

which contradicts the conclusion of the theorem. This is because X is not simply

connected.

DK
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APPENDiX B

Morgenthaler postulated conditions on S under which S is a correct sample

of F (S) [9]. It turns out that his conditions are equivalent to non-existence of

singularities in S. Denote by N'(p ) the set of all 8-neighbors of p including p,

by 0 (S) the number of components in the sense of S, and by 0 (X) the number

of components of a topological space X. His conditions are:

MI. O(F(S nN(p)) [(S nN(p)),allp inS.

M2. O(F(§ nN(p)) o(S nN(p)) allp inS.

This gives us an opportunity to characterize singularity from a different per-

spective.

Lemma. The following conditions on a 2D digital image S are equivalent to

each other:

S1. S has no singularity.

S2. If p, q in S are 8-adjacent to each other then there is r in S which is

4-adjacent to both p and q.

SS. Analog of S2 for S.
0

1 0
Proof. If S2 is false then there exists a 2X2 matrix 0 1 (or its rotation by

90 degrees) which is a singularity. This proves that Si implies S2. By symmetry,

S1 implies S3. If Si is false then S contains a singularity which is simply a 2X2

matrix such as that above which certainly violates both S2 and S3. Thus each of

S2 and S3 implies S1. //

45..
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Proposition. Condition (Ml and M2) is equivalent to non-existence of a

singularity in S.

Proof. Recall that 0 (F ( S lN'(p)j equals the number of 8-

components of s flN'(p). Thus if 8-adjacency is used on S then M1 holds

automatically, and M2 is easily seen to be equivalent to Si as 4-adjacency is sup-

posedly used on S. By symmetry, if 4-adjacency is used on S, then Mi is

equivalent to S2. /
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